THE NEURAL CORRELATES OF PERCEPTUAL LOAD INDUCED ATTENTIONAL SELECTION: AN FMRI STUDY

P. WEI, ^{a,b,c†} A. J. SZAMEITAT, ^b H. J. MÜLLER, ^b T. SCHUBERT ^b AND X. ZHOU ^{c,d*}

^a Beijing Key Laboratory of Learning and Cognition and Department of Psychology, Capital Normal University, Beijing 100048, China

^b Department of Psychology, LMU München, D-80802 München, Germany

^c Center for Brain and Cognition Sciences and Department of Psychology, Peking University, Beijing 100871, China

^d Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing 100871, China

Abstract—The neural correlates of perceptual load induced attentional selection were investigated in an functional magnetic resonance imaging (fMRI) experiment in which attentional selection was manipulated through the variation of perceptual load in target search. Participants searched for a vertically or horizontally oriented bar among heterogeneously (the high load condition) or homogeneously (the low load condition) oriented distractor bars in the central display, which was flanked by a vertical or horizontal bar presented at the left or the right periphery. The search reaction times were longer when the central display was of high load than of low load, and were longer when the flanker was incongruent than congruent with the target. Importantly, the flanker congruency effect was manifested only in the low load condition, not in the high load condition, indicating that the perceptual load in target search determined whether the task-irrelevant flanker was processed. Imaging analyses revealed a set of fronto-parietal regions having higher activations in the high than in the low load condition. Anterior cingulate cortex (ACC) was more activated for the incongruent than for the congruent trials. Moreover, ACC and bilateral anterior insula were sensitive to the interaction between perceptual load and flanker congruency such that the activation differences between the incongruent and congruent conditions were significant in the low, but not in the high load condition. These results are consistent with the claim that ACC and bilateral anterior insula may exert executive control by selectively biasing processing in favor of task-relevant information and this biasing depends on the resources currently available to the control system. © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

Key words: visual search, perceptual load, flanker effect, A-CC, anterior insula.

INTRODUCTION

The extent to which individuals can focus attention in face of distracting information depends on the information load imposed by the current task. The 'perceptual load theory of attention' (Lavie and Tsal, 1994; Lavie, 1995, 2005, 2010) provides a framework which combines the earlyselection assumption (e.g., Broadbent, 1958) that perception is a limited-capacity process with the lateselection assumption (e.g., Deutsch and Deutsch, 1963) that perception is an automatic process, attempting to resolve the longstanding antagonism between early- and late-selection theories of attention. According to perceptual load theory, a task with high perceptual load that engages all available processing resources would leave effectively no spare capacity for the perception of task-irrelevant information, giving rise to a pattern of performance indicative of early attentional selection. In contrast, a task with low perceptual load would leave spare capacity that (unintentionally) spills over to irrelevant information; processing of this information could interfere with the processing of the target, yielding a pattern of performance indicative of late attentional selection.

Perceptual load theory has received much support in behavioral studies (see Lavie, 2005, 2010, for reviews). In a typical experimental situation, participants search for a target among a number of non-target items in the central display, which is flanked in the periphery by a tobe-ignored item that can be congruent (potentially requiring the same response as the target) or incongruent (potentially requiring the opposite response) with the target. Importantly, the 'perceptual' load of the central display is often manipulated between low and high, for example, by presenting the target surrounded by a smaller or a larger number of distractors (e.g., Lavie and de Fockert, 2003), by making the distractors visually homogeneous or heterogeneous (e.g., Johnson et al., 2002; Lavie and Cox, 1997; Wei and Zhou, 2006), or by making the 'attentional' processing requirements easy or difficult without changing the perceptual properties of the task-relevant stimuli (e.g., Lavie, 1995;

0306-4522/13 $36.00 \otimes 2013$ IBRO. Published by Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.neuroscience.2013.07.025

^{*}Correspondence to: X. Zhou, Department of Psychology, Peking University, Beijing 100871, China. Tel: +86-10-6275-6599; fax: +86-10-6276-1081.

E-mail addresses: aweiping@gmail.com (P. Wei), xz104@pku.e-du.cn (X. Zhou).

[†] Address: Department of Psychology, Capital Normal University, Beijing 100048, China. Tel: +86-10-68901747; fax: +86-10-68902413.

Abbreviations: ACC, anterior cingulate cortex; ANOVA, analysis of variance; DLPFC, dorsolateral prefrontal cortex; FEF, right frontal eye field; FWE, family-wise error; GLM, general linear model; IFJ, inferior frontal junction; PPC, posterior parietal cortex; SPM, Statistical Parametric Mapping.

Rees et al., 1997; Chen, 2003; Schwartz et al., 2005). The absence or presence of a congruency effect (i.e., an reaction time (RT) difference between incongruent and congruent conditions) has been taken as an indicator of whether the peripheral flanker is processed up to the response level. The flanker congruency effect has been found to be larger when processing of the central display and identifying the target are of low perceptual load, and smaller or entirely absent when the current task is of high perceptual load (Lavie, 2005; Wei and Zhou, 2006).

At the neural level, neuroimaging studies on the role of perceptual load in attentional selection have mainly shown activation in stimulus processing areas for taskirrelevant stimuli to be reduced with high, relative to low, perceptual load (Rees et al., 1997; Schwartz et al., 2005; Bahrami et al., 2007). For example, Rees et al. (1997) asked participants to perform a linguistic task of either low or high load in processing a word presented in the center of the screen, while ignoring irrelevant visual motion in the periphery. Although the linguistic task and distractor processing were unrelated, functional imaging of activity in cortical area V5 revealed reduced motion processing during the high load task. Schwartz et al. (2005) varied the attentional load in a visual monitoring task performed on a rapid serial visual

Fig. 1. Example of trial sequence and example display with high load incongruent and low load congruent conditions.

software (http://nbs.neuro-bs.com/). Each trial lasted for 2500 ms. At the start of a search trial, a white fixation dot. 0.05° in visual angle, appeared at the center of the black screen for 500 ms. Six dots around the central fixation then appeared for 200 ms, indicating the six locations of the central display at which the target and the five distractor items were presented. After another 100 ms in which only the fixation dot was shown, the search display was presented for 500 ms. The search display consisted of a central fixation dot surrounded by the search array, that is, 6 bar stimuli (at an eccentricity of 1.2° from central fixation, see Fig. 1). A flanker was presented to the left or the right side of the search array (at an eccentricity of 3.2°). Each bar of the search array, as well as the flanker bar in the periphery, subtended $0.8 \times 0.2^{\circ}$ of visual angle. The search array always contained a target stimulus which was randomly either a horizontal or vertical bar. At the same time, five distractor bars were presented. In the low load condition, all distractors had the same orientation so that the task was basically a 'pop-out' search (Treisman, 1988). In the high load condition, all distractor bars had randomly heterogeneous orientations, requiring a rather serial search for the target (Duncan and Humphreys, 1989; Wolfe, 1994). After the search display, a 1200-ms blank display with the fixation dot was presented.

Participants were instructed to respond as quickly and as accurately as possible upon the presentation of the search display, by pressing the left button of the computer mouse for horizontal (target) bar and the right button for vertical (target) bar. In a null trial, only the fixation dot was presented for 2500 ms. For the purpose of jittering in fMRI design, additional blank displays lasting between 0 ms and 3000 ms were added randomly to the end of each trial, yielding a mean intertrial-interval of 1500 ms.

A 2 \times 2 fast event-related design was used. The first factor was the perceptual load of the search display (high vs. low). For the high load conditions, the five distractor bars always had different orientations. For the low load conditions, although the distractor bars in each trial had the same orientation, bars with different orientations were equally likely used over different trials. The second factor was the congruency between the target and the flanker, which could be the same (congruent) or different (incongruent) in orientation. The location of the target in the central search display was randomly selected, and the flanker was presented randomly on the left or the right side of the central display.

The total 432 experimental trials (108 trials for each perceptual load \times congruency condition) were intermixed with 48 null trials. All these trials were

randomized and divided up between two fMRI runs, with each run acquiring 525 volumes. An anatomical scan was obtained between the two sessions. Only the fixation point was displayed during the first 10 s of each session for participants to become accustomed to the scanning noise and for the MR signal to reach a steady state. During each scan, participants had two breaks lasting 40 s each without the scanner stopping. All participants completed a training session of 10 min before the scanning.

Data acquisition

A 3T Siemens Allegra system with a standard head coil atDedsiDtyd,G(d)63.3riamy(a)-29,w.5(s)12(e)-244.3(min)]TJ0-1usd totsis.

made more errors in the high- than in the low-load condition (9.8% vs. 4.5%), and more in the incongruent than in the congruent condition (8.2% vs. 6.1%). The interaction was not significant.

Imaging

In accordance with the analyses of the behavioral data. the main effects of perceptual load [(High con + High incon) vs. (Low con + Low incon)] and of flanker congruency [(High incon + Low incon) vs. (High con + Low con)], and the interaction between them [(Low incon – Low con) VS. (High incon – High con)] were computed in the wholebrain analysis (see Table 2 and Fig. 2). Compared with the low-load condition, bilateral inferior frontal junction (IFJ), bilateral anterior insula, bilateral PPC, ACC, and right frontal eye field (FEF) were activated in the highload condition, indicating these areas to be involved in visual search for a predefined target (or one of two predefined alternatives) among heterogeneous distractors. The ACC was more activated in the incongruent compared to the congruent condition, which is consistent with the idea that this area is involved in the processing of conflicting information. Importantly, the interaction between perceptual load and flanker congruency was significant for the ACC, and the bilateral anterior insula. Follow-up analyses for these areas showed that the difference between the activation values in the incongruent compared to the congruent conditions was higher for the low-load condition compared to the high load condition. Parameter estimations from the activated clusters in these regions are illustrated in Fig. 2 for the four experimental conditions.

DISCUSSION

By asking participants to search for a vertically or a horizontally oriented bar in the central display while ignoring a response-congruent or -incongruent flanker in the periphery, we found that RTs were affected by both the perceptual load of the central search task and the flanker congruency, replicating previous behavioral studies (e.g., Lavie, 2005; Wei and Zhou, 2006). RTs were longer when the central display induced a high load rather than a low load, and longer when the target and the flanker were incongruent than when they were congruent. Moreover, the flanker congruency effect on RTs was manifested in the low load condition, but not in the high load condition. As hypothesized, imaging results revealed a set of fronto-parietal regions, including right FEF, bilateral IFJ, bilateral PPC, bilateral anterior insula, and ACC, to be more activated in the high load, compared to the low load, condition, Furthermore, ACC was more strongly activated on incongruent trials than on congruent trials. Importantly, activity in ACC and bilateral anterior insula also exhibited an interaction between perceptual load and flanker congruency, with greater activation on incongruent than on congruent trials only in the low load, but not in the high load, condition.

The ACC activation seen in the main contrast between incongruent and congruent conditions is consistent with previous studies. Greater ACC activation on incongruent than on congruent trials has been observed repeatedly in Stroop tasks (Barch et al., 2001), flanker tasks (Botvinick et al., 1999, 2001; van Veen et al., 2001), and Simon tasks (Kerns, 2006), as well as in other tasks in which an inappropriate response tendency elicited by the processing of task-irrelevant information must be overridden. According to the conflict monitoring theory (Botvinick et al., 1999, 2001, 2004; Botvinick, 2007), conflicts arising from processing the taskirrelevant as well as the relevant information, and mapping of the respective processing outcomes onto conflicting responses, would trigger adjustments in the activation of strategic, task-regulating representations, which in turn would bias processing toward the taskrelevant stimulus-response pathways (Botvinick et al.,

Table 2. Brain areas activated in the main effect of perceptual load, the flanker effect, and the interaction between perceptual load and flanker effect. Activations were reported with FWE correction of p < .05, and extent threshold of 20 voxels. Peak coordinates (x, y, z) correspond to the MNI (Montreal Neurological Institute) space

Contrast/anatomical regions	L/R	BA	x	У	z	Z-value	Voxel No.
High load vs. low load							
Inferior frontal junction	L	48/44	-35	11	29	5.69	56
	R	44	40	11	30	6.71	633
Frontal eye field	R	6	24	2	47	6.59	184
Anterior insula	L	47	-29	25	-5	6.06	105
	R	47	31	27	-2	5.48	511
Anterior cingulate cortex	L/R	32	1	27	44	6.95	576
Posterior parietal cortex	L	7	-23	-64	47	6.86	176
	R	7	26	-61	47	5.92	733
Incongruent vs. congruent							
Anterior cingulate cortex	L/R	32/8	6	25	45	5.18	74
Low load (incon-con) vs. high load (incon-con)							
Anterior cingulate cortex	L/R	8/32	4	24	44	6.31	460
Left anterior insula	L	48	-34	16	4	5.57	22
Right anterior insula	R	47/45	36	28	0	5.82	201

Fig. 2. The activated regions in (A) the main effect of perceptual load, (B) the main effect of flanker congruency, and (C) the interaction. (D) Parameter estimations extracted from the activated areas are shown as a function of the experimental conditions.

2001). In this adjustment process, ACC is responsible for detecting response conflict and signal this to brain areas subserving conflict resolution, such as the dorsolateral prefrontal cortex (DLPFC).

In the current experiment, the main contrasts between the high-load and low-load conditions revealed a pattern of activations in ACC and other fronto-parietal regions, e.g., the right FEF, bilateral IFJ, bilateral PPC, and bilateral anterior insula. The observation of the latter is consistent with previous studies that examined the neural correlates of perceptual load (Schwartz et al., 2005), attentional selection (e.g., Corbetta and Shulman, 2002), and visual search (Wojciulik and Kanwisher, 1999; Donner et al., 2000, 2002; Leonards et al., 2000; Nobre et al., 2003; Müller-Plath, 2008; Wei et al., 2009). In fact, the greater ACC activation in the high-load compared to the low-load condition is not readily consistent with the conflict monitoring theory in its original form (Botvinick et al., 2001), in which the role attributed to ACC was to detect 'response' conflict. However, the conflict monitoring theory might be extended in two ways to accommodate the current findings. First, conflicts in information processing may arise at various stages, or levels, of processing, from stimulus encoding, through target detection and response selection to response execution (Eriksen and Schultz, 1979; Milham et al., 2001; van Veen et al., 2001; Chen et al., 2006). Thus, in the current high load condition, heterogeneous distractors in the central display may cause difficulty in stimulus encoding at the perceptual level. ACC might also detect this 'perceptual' conflict and signal this to fronto-parietal regions for exerting more attentional control, in order to focus processing on the search display and select and identify the search target. Second, according to the SERR (SEarch via Recursive Rejection) model of visual search (Humphreys and Müller, 1993; Müller et al., 1994; for overviews, see Müller and Humphreys, 1993, and Müller et al., 1998), a target-like distractor has a greater chance of falsely activating the target template, which may then lead to inappropriate response tendencies (e.g., false alarms in a target present/absent task). In the current experiment (with the two alternative targets, only one of which was presented), the chance of false responses was increased in the high-load (heterogeneousdistractor) condition, where a distractor similar in orientation to the alternative, but not presented target might induce a tendency toward an incorrect response, causing 'response' conflict within the central (search) task. ACC might also be responsible for detecting such conflicting response tendencies (only one of which can be correct). Consistent with this, as mentioned in the Introduction, heightened ACC activation has also been observed in a pure visual-search task (without any flankers) under conditions of heterogeneous, as compared to homogeneous, distractors (Wei et al., 2009).

It should be noted, though, that even with the extensions sketched above, the role of ACC is restricted to 'detecting' conflict according to the conflict monitoring theory. However, recent evidence and models suggest that ACC may not be exclusively involved in conflict detection, but also in the focusing attention on the taskrelevant information (Paus et al., 1998; Posner and DiGirolamo, 1998), or in the implementation and maintenance of task goals (Weissman et al., 2003; Dosenbach et al., 2006, 2007, 2008). For example, a study examining the time course of activity in ACC and right anterior insula/frontal operculum demonstrated that these regions are engaged throughout the performance of a task, from stimulus perception to response planning and execution and to evaluation of feedback and posttask adjustments (Dosenbach et al., 2007). Additionally, ACC and anterior insula have been found to modulate the activity of other brain areas during challenging tasks (Dosenbach et al., 2007; Sridharan et al., 2008; Eckert et al., 2009). Thus, ACC and anterior insula have been suggested to form a putative task-control network (Dosenbach et al., 2006), and to play a causal role in the initiation of cognitive control, in particular for task-set implementation in coordinating goal-directed performance (Corbetta et al., 2008; Sridharan et al., 2008). Consistent with this proposal, our results also showed concurrent activations of ACC, anterior insula, and fronto-parietal regions such as FEF and PPC in the contrast between the high-load and low-load conditions, indicative of these areas' involvement in attentional control.

Moreover, ACC, or at least part of ACC, was not only activated in the main effects of perceptual load and flanker congruency, but also sensitive to the interaction between these factors. In fact, activations in ACC and bilateral anterior insula mirrored the interaction pattern in the behavioral data. While activations were generally stronger for the high load than for the low load condition, the level of activation was higher for incongruent relative to congruent stimuli only in the low load condition, not in the high load condition. Previous neuroimaging studies on the role of perceptual load in attentional selection have mainly shown activations in stimulus processing areas for task-irrelevant stimuli to be reduced with high, relative to low, perceptual load (Rees et al., 1997; Schwartz et al., 2005; Bahrami et al., 2007). The relevant studies used peripheral dot motion (Rees et al., 1997) or peripheral checkerboards (Schwartz et al., 2005) as task-irrelevant stimuli, that is, there was no manipulation of the response congruency between the target and the irrelevant stimuli. Although ACC was found to be activated in the main contrast of high vs. low load conditions, these studies did not demonstrate an 'interaction between central load and peripheral stimulation' (Schwartz et al., 2005, p. 774). By contrast, the present results show, for the first time, that the neural activation related to response congruency between the target and the task-irrelevant stimuli is modulated by perceptual load.

How can this pattern of interaction in ACC and anterior insula be explained by the theoretical approaches outlined above? On the one hand, according to extended versions of the conflict monitoring theory and the perceptual load theory, this interaction might suggest that the ability to detect conflict is subject to resource limitation. In the high load condition, searching for the target among heterogeneous distractors engages all available processing resources and leaves effectively no spare capacity for the perception of task-irrelevant flanker, resulting in the null effect in the activation of ACC and anterior insula. In contrast, in the low load condition, searching for the target among homogeneous would distractors leave spare capacity that (unintentionally) spills over to irrelevant flanker, which in turn causes conflict that is readily detected by ACC. Although one may argue that the definition of perceptual load and the consumption of attentional resources are rather descriptive and "unfalsifiable" (Tsal and Benoni, 2010), this deficiency might be compensated for by analyzing the cognitive processes and mechanisms underlying the consumption of resources. The saliencebased model of attention, the Guided Search model (Wolfe, 1994), assumes that feature contrast values, signaling the extent to which an item differs from other items in its vicinity, are computed not only for the target, but also in parallel for the other presented items, i.e., the distractors and the flanker. In the high load condition, each item in the central display, the target, and the flanker were different from each other, yielding comparable bottom-up salience values for these items. However, in the low load condition, only the target in the central display and the flanker in the periphery were different from other items in the vicinity, yielding higher bottom-up salience values for these two items. Accordingly, in the high load condition, the relatively higher bottom-up salience of heterogeneous distractors results in the occurrence of strong perceptual conflicts in finding and discriminating the target and the high level of ACC activity signaling the general level of conflicts (Fig. 2D); this in turn may cause the potentially conflicting flanker, which is presented in the display periphery, to be excluded from further processing. By contrast, in the low load condition, with little or no conflict in the central display and with the higher bottom-up salience value of the peripheral flanker, the flanker could be more likely to win competition within its vicinity and the response conflict induced by the flanker might be readily registered in ACC, yielding differential activations in this area for incongruent as compared to congruent trials.

On the other hand, according to models that assume ACC and anterior insula are involved in the actual implementation of task goals (Dosenbach et al., 2006, 2007, 2008), activations in these areas might be taken to represent the mental effort in different task conditions. Indeed, a recent model of hierarchical reinforcement learning (Holroyd and Yeung, 2012) proposes that ACC not only chooses between possible options in attentional selection or cognitive control, but also motivates and energizes behavior by determining the level of effort to be applied toward executing the policy, and maintaining this signal until the chosen option has been carried through. The similar interaction patterns in the behavioral data and the activations in ACC and anterior insula are consistent with this proposal.

The present study does not allow us to choose between the (amended) conflict monitoring theory and the other accounts discussed above, which might in any case not be mutually exclusive in understanding the role of ACC and related brain areas in attentional selection (Botvinick, 2007). The pattern of results that we report here may be simulated or validated in future, computational-modeling studies on the role of ACC.

To conclude, by asking participants to search for a vertically or horizontally oriented bar in the central display and by presenting a congruent or incongruent flanker in the periphery, we demonstrated an interaction between the load of attentional selection and the effect of conflict control not only at the behavioral level, but also at the neural level. The anterior cingulate cortex (ACC) and bilateral anterior insula were found to be sensitive to the interaction between perceptual load and flanker congruency. The activations were larger for the incongruent stimuli, relative to the congruent stimuli, but only when the perceptual load in searching for the central target was low. These results suggest that ACC and bilateral anterior insula may exert executive control by selectively biasing processing in favor of taskrelevant information, and this biasing depends on the resources currently available to the control system.

Acknowledgements—This study was supported by grants from the DFG (Research Group FOR480 and Excellence Cluster

- Johnson DN, McGrath A, McNeil C (2002) Cuing interacts with perceptual load in visual search. Psychol Sci 13:284–287.
- Kerns JG (2006) Anterior cingulate and prefrontal cortex activity in an fMRI study of trial-to-trial adjustments on the Simon task. Neuroimage 15:399–405.
- Lavie N (1995) Perceptual load as a necessary condition for selective attention. J Exp Psychol 21:451–468.
- Lavie N (2005) Distracted and confused?: selective attention under load. Trends Cogn Sci 9:75–82.
- Lavie N (2010) Attention distraction and cognitive control under load. Curr Direct Psychol Sci 19(3):143–148.
- Lavie N, Cox S (1997) On the efficiency of visual selective attention: Efficient visual search leads to inefficient distractor rejection. Psychol Sci 8:395–398.
- Lavie N, de Fockert JW (2003) Contrasting effects of sensory limits and capacity limits in visual selective attention. Percept Psychophys 65:202–212.
- Lavie N, Tsal Y (1994) Perceptual load as a major determinant of the locus of selection in visual attention. Percept Psychophys 56:183–197.
- Leonards U, Sunaert S, Hecke PV, Orban GA (2000) Attention mechanisms in visual search – an fMRI study. J Cogn Neurosci 12:61–75.
- Milham MP, Banich MT, Webb A, Barad V, Cohen NJ, Wszalek T, et al (2001) The relative involvement of anterior cingulate and prefrontal cortex in attentional control depends on nature of conflict. Cogn Brain Res 12:467–473.
- Müller HJ, Humphreys GW (1993) A connectionist model of visual search for simple form conjunctions. In: Brogan D, Gale A, Carr K, editors. Visual search 2. London: Taylor and Francis. p. 61–71.
- Müller HJ, Humphreys GW, Donnelly N (1994) SEarch via Recursive Rejection (SERR): visual search for single and dual formconjunction targets. J Exp Psychol Hum Percept Perform 20:235–258.
- Müller HJ, Humphreys GW, Olson AC (1998) SEarch via Recursive Rejection (SERR). In: Wright RD, editor. Visual attention, vancouver studies in cognitive science. New York: Oxford University Press. p. 389–416.
- Müller-Plath G (2008) Localizing subprocesses of visual search by correlating local brain activation in fMRI with response time model parameters. J Neurosci Meth 171:316–330.
- Nee DE, Wager TD, Jonides J (2007) Interference resolution: insights from a meta-analysis of neuroimaging tasks. Cogn Affect Behav Neurosci 7:1–17.
- Nobre AC, Coull JT, Walsh V, Frith CD (2003) Brain activations during visual search: contributions of search efficiency versus feature binding. Neuroimage 18:91–103.
- Paus T, Koski L, Caramanos Z, Westbury C (1998) Regional differences in the effects of task difficulty and motor output on

blood flow response in the human anterior cingulate cortex: a review of 107 PET activation studies. Neuroreport 9:R37–R47.

- Posner MI, DiGirolamo GJ (1998) Executive attention: conflict target detection and cognitive control. In: Parasuraman R, editor. The attentive brain. Cambridge, MA: MIT Press. p. 401–423.
- Rees G, Frith CD, Lavie N (1997) Modulating irrelevant motion perception by varying attentional load in an unrelated task. Science 278:1616–1619.
- Ridderinkhof KR, Ullsperger M, Crone EA, Nieuwenhuis S (2004) The role of the medial frontal cortex in cognitive control. Science 306:443–447.
- Roelofs A, van Turennout M, Coles MGH (2006) Anterior cingulate cortex activity can be independent of response conflict in Strooplike tasks. Proc Natl Acad Sci U S A 103:13884–13889.
- Scheffers MK, Coles MG (2000) Performance monitoring in a confusing world: error-related brain activity judgments of response accuracy and types of errors. J Exp Psychol Hum Percept Perform 26:141–151.
- Schwartz S, Vuilleumier P, Hutton C, Maravita A, Dolan RJ, Driver J (2005) Attentional load and sensory competition in human vision: modulation of fMRI responses by load at fixation during taskirrelevant stimulation in the peripheral visual field. Cereb Cortex 15:770–786.
- Sridharan D, Levitin DJ, Menon V (2008) A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci U S A 105:12569–12574.
- Treisman AM (1988) Features and objects: the fourteenth Bartlett memorial lecture. Q J Exp Psychol 40:201–237.
- Tsal Y, Benoni H (2010) Diluting the burden of load: perceptual load effects are simply dilution effects. J Exp Psychol Hum Percept Perform 36:1645–1656.
- van Veen V, Cohen JD, Botvinick MM, Stenger VA, Carter CS (2001) Anterior cingulate cortex conflict monitoring and levels of processing. Neuroimage 14:1302–1308.
- Wei P, Müller HJ, Pollmann S, Zhou X (2009) Neural basis of interaction between target presence and display homogeneity in visual search: an fMRI study. Neuroimage 45:993–1001.
- Wei P, Zhou X (2006) Processing multidimensional objects under different perceptual loads: the priority of bottom-up perceptual saliency. Brain Res 1114:113–124.
- Weissman DH, Giesbrecht B, Song AW, Mangun GR, Woldorff MG (2003) Conflict monitoring in the human anterior cingulate cortex during selective attention to global and local object features. Neuroimage 19(4):1361–1368.
- Wojciulik E, Kanwisher N (1999) The generality of parietal involvement in visual attention. Neuron 23:747–764.
- Wolfe JM (1994) Guided search 2.0: a revised model of visual search. Psychon Bull Rev 1:202–238.

(Accepted 11 July 2013) (Available online 20 July 2013)